На старт, внимание, марш! Ученые обнаружили в мозгу цепь, которая запускает запланированное движение
Запланированное движение необходимо в нашей повседневной жизни, и оно часто требует отложенного выполнения. В детстве мы стояли, пригнувшись, готовые, но ждали крика «ВПЕРЕД!» перед бегом от стартовой линии. Став взрослыми, мы ждем, пока загорится зеленый сигнал светофора, прежде чем повернуть. В обеих ситуациях мозг спланировал наши точные движения, но подавляет их выполнение до определенного сигнала. Теперь ученые обнаружили сеть мозга, которая превращает планы в действия в ответ на этот сигнал.
Ученые из Флоридского института неврологии им. Макса Планка, Исследовательского кампуса Джанелия HHMI, Института исследований мозга Аллена и некоторых других, под руководством соавторов доктора Хидехико Инагаки и доктора Сусу Чена решили понять, как сигналы в нашей среде могут запускать запланированное движение.
«Мозг подобен оркестру, — сказал доктор Инагаки. «В симфонии инструменты играют разные мелодии с разным темпом и тембром. Совокупность этих звуков образует музыкальную фразу. Точно так же нейроны в мозге активны по разным схемам и в разное время. Совокупность нейронной активности опосредует определенные аспекты нашего поведения».
Например, моторная кора — это область мозга, которая контролирует движение. Паттерны активности в моторной коре резко различаются между фазами планирования и выполнения движения. Переход между этими паттернами имеет решающее значение для запуска движения. Тем не менее, области мозга, контролирующие этот переход, были неизвестны.
«Должны быть области мозга, действующие как проводник», — продолжал доктор Инагаки. «Такие области отслеживают сигналы окружающей среды и координируют активность нейронов от одного паттерна к другому. Дирижер следит за тем, чтобы планы претворялись в действия в нужное время».
Чтобы определить нейронную цепь, которая служит проводником для запуска запланированного движения, команда одновременно записала активность сотен нейронов, пока мышь выполняла задание на движение, запускаемое сигналом. В этом задании мышей обучали лизать вправо, если к усам прикасались, или влево, если к усам не прикасались. Если животные лизали в правильном направлении, они получали награду. Однако была загвоздка. Животные должны были откладывать свое движение до тех пор, пока не прозвучал звуковой сигнал, или «начальный сигнал». Вознаграждались только правильные движения после стартового сигнала.
Затем ученые сопоставили сложные паттерны активности нейронов с соответствующими этапами поведенческой задачи. Исследователи обнаружили, что мозговая активность возникает сразу после сигнала движения и во время переключения между планированием и выполнением движений. Эта мозговая активность возникла из цепи нейронов в среднем мозге, таламусе и коре.
Чтобы проверить, действует ли эта схема как проводник, команда использовала оптогенетику. Этот подход позволил ученым активировать или деактивировать эту цепь с помощью света. Активация этой цепи на этапе планирования поведенческой задачи переключала мозговую активность мыши с планирования моторики на выполнение и заставляла мышь лизать. С другой стороны, отключение схемы во время воспроизведения сигнала для подавления движения, вызванного сигналом. Мыши оставались на стадии моторного планирования, как будто они не получили сигнал движения.
Эта работа доктора Инагаки и его коллег выявила нервную цепь, которая играет решающую роль в запуске движения в ответ на сигналы окружающей среды. Доктор Инагаки объясняет, как их результаты демонстрируют общие черты контроля поведения:
«Мы нашли цепь, которая может изменить активность моторной коры с планирования движения на выполнение в нужное время. Это дает нам представление о том, как мозг управляет активностью нейронов для создания сложного поведения. Будущая работа будет сосредоточена на понимании того, как эта и другие цепи реорганизуют активность нейронов во многих областях мозга».
В дополнение к этим фундаментальным достижениям в понимании того, как функционирует мозг, эта работа имеет важное клиническое значение. При двигательных нарушениях, таких как болезнь Паркинсона, больные испытывают затруднения при самостоятельном движении, в том числе при ходьбе. Однако добавление сигналов окружающей среды для запуска движений, таких как линии на полу или звуковые сигналы, может значительно улучшить подвижность пациента. Это явление, известное как парадоксальная кинезия, предполагает, что разные механизмы в мозге задействуются для самостоятельного движения и движения, запускаемого сигналом. Обнаружение мозговых сетей, участвующих в движениях, запускаемых сигналом, которые относительно не проявляются при болезни Паркинсона, может помочь оптимизировать лечение, пишет EurekAlert.
Написать комментарий