Изменение температуры может помочь новой технологии сенсорного экрана имитировать виртуальные формы
Высокоточное прикосновение может значительно расширить сферу того, что мы ожидаем от вычислительных устройств, делая возможными новые дистанционные сенсорные ощущения. Исследование этих достижений, проведенное парой исследователей с факультета машиностроения Техасского университета, может помочь сенсорным экранам имитировать виртуальные формы.
Доктор Синтия Хипвелл изучает трение на уровне пальца и устройства, а доктор Джонатан Фелтс исследует трение при взаимодействии между отдельными клетками кожи и стеклом интерфейса сенсорного экрана. Они объединяют свои области знаний, чтобы применить принципы трения на микроскопическом уровне к механике взаимодействия пальцев и устройств.
Хипвелл подчеркнула важность этого стремления, сравнив его с технологиями, доступными в настоящее время для передачи захватывающей и точной информации с помощью высококачественного аудио и видео.
«Мы можем просматривать записанные в цифровом виде или удаленно переданные аудио и видео на экране с большой детализацией», — сказала Хипвелл. «У нас еще нет такой же возможности с сенсорным экраном. Представьте, что вы можете ощутить кожу змеи, которая живет на другом континенте, или ткань одежды, которую вы хотите купить в Интернете».
Еще одно применение этой технологии, которое в последнее время вызвало большой интерес, — это расширение иммерсивных виртуальных сред, таких как предлагаемая метавселенная.
«Осязательные ощущения, которые потребуются, чтобы действительно погрузиться в полностью цифровую реальность, требуют огромных достижений в сенсорном восприятии», — сказал Фелтс. «То, что мы сделали, по сути, создали совершенно новый способ модуляции восприятия прикосновения, которого раньше не существовало».
Команда работает над тем, чтобы показать, что можно имитировать уникальные механические и тепловые ощущения, связанные с различными текстурами и формами поверхности. Их недавняя публикация в журнале Science Robotics демонстрирует возможность передачи этих ощущений на сенсорный экран с помощью одного лишь изменения температуры, а не с помощью ультразвуковых колебаний или методов электроадгезии.
«На самом деле мы были удивлены величиной увеличения трения, которого нам удалось достичь», — сказала Хипвелл. «Его величина конкурентоспособна с текущими поверхностными тактильными устройствами, а это означает, что есть еще один вариант модуляции трения при рендеринге поверхностных тактильных устройств».
Еще одна захватывающая разработка, по словам Хипвелл, заключается в том, что их исследование показало, что можно локализовать трение на внешнем слое кожи и, по крайней мере, на скорости считывания, контролировать трение, не нагревая устройство.
По мере того, как исследования продолжаются, Фелтс сказал, что многие из остающихся вопросов связаны с тем, насколько легко этот подход может быть включен в потребительские устройства и коммерциализирован.
«Можно ли его уменьшить? Может ли он реагировать достаточно быстро? Может ли он имитировать широкий спектр поверхностей? Может ли он быть доступным? и поиск путей миниатюризации и коммерциализации», — сказал он.
Команда продолжает свою работу по решению проблем, связанных с этим подходом, путем дальнейшего изучения сложностей интерфейса пальцев и устройств и вариаций, возникающих из-за различий в окружающей среде и свойствах кожи. Они также надеются рассмотреть улучшения дизайна для миниатюризации и интеграции с сенсорными экранами, пишет ScienceDaily.
Написать комментарий